Novel Bifunctional Cyclic Chelator for 89Zr Labeling–Radiolabeling and Targeting Properties of RGD Conjugates

نویسندگان

  • Chuangyan Zhai
  • Dominik Summer
  • Christine Rangger
  • Gerben M. Franssen
  • Peter Laverman
  • Hubertus Haas
  • Milos Petrik
  • Roland Haubner
  • Clemens Decristoforo
چکیده

Within the last years (89)Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with (89)Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [(89)Zr]FSC-RGD conjugates or [(89)Zr]triacetylfusarinine C (TAFC). Quantitative (89)Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [(89)Zr]DFO, [(89)Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [(89)Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of (89)Zr-based PET imaging agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic versus Noncyclic Chelating Scaffold for 89Zr-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression

Zirconium-89 is an emerging radionuclide for positron emission tomography (PET) especially for biomolecules with slow pharmacokinetics as due to its longer half-life, in comparison to fluorine-18 and gallium-68, imaging at late time points is feasible. Desferrioxamine B (DFO), a linear bifunctional chelator (BFC) is mostly used for this radionuclide so far but shows limitations regarding stabil...

متن کامل

Fusarinine C, a novel siderophore-based bifunctional chelator for radiolabeling with Gallium-68.

Fusarinine C (FSC), a siderophore-based chelator coupled with the model peptide c(RGDfK) (FSC(succ-RGD)3), revealed excellent targeting properties in vivo using positron emission tomography (PET). Here, we report the details of radiolabeling conditions and specific activity as well as selectivity for (68)Ga. (68)Ga labeling of FSC(succ-RGD)3 was optimized regarding peptide concentration, pH, te...

متن کامل

Triazine-Based Tool Box for Developing Peptidic PET Imaging Probes: Syntheses, Microfluidic Radiolabeling, and Structure–Activity Evaluation

This study was aimed at developing a triazine-based modular platform for targeted PET imaging. We synthesized mono- or bis-cyclo(RGDfK) linked triazine-based conjugates specifically targeting integrin αvβ3 receptors. The core molecules could be easily linked to targeting peptide and radiolabeled bifunctional chelator. The spacer core molecule was synthesized in 2 or 3 steps in 64-80% yield, and...

متن کامل

New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One- Step Labeling and PET Imaging with Ga

Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatme...

متن کامل

Synthesis of a novel bifunctional chelator AmBaSar based on sarcophagine for peptide conjugation and (64)Cu radiolabelling.

Copper-64 shows promise as both a suitable PET imaging and therapeutic radionuclide due to its nuclear characteristics. Stable attachment of radioactive (64)Cu(2+) to targeted imaging probes requires the use of a bifunctional chelator. Sarcophagine (Sar) ligands coordinate the metal ion (64)Cu(2+) within the multiple macrocyclic rings comprising the cage structure, yielding extraordinarily stab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2015